Influence of textual characteristics and reviewer expertise on the percep-tion of usefulness of online reviews
application of natural language processing in Brazilian hotel reviews on TripAdvisor
DOI:
https://doi.org/10.7784/rbtur.v19.3065Keywords:
Online reviews, Textual characteristics, Natural language processing, Digital platformAbstract
In the digital environment, characterized by pseudonymity and information overload, digital platforms encourage their users to rate the usefulness of online reviews (OR), promoting the filtering of relevant information, reducing cognitive overload, and promoting the veracity of information. In this article, we analyze the influence of detail, readability, sentiment, appeal, and adjectives of OR and the reviewer's expertise on perceived usefulness. For this purpose, a survey was conducted with 124,594 ORs taken from the TripAdvisor platform. The hypotheses were tested using a linear regression model. Our findings reveal that reviewer's expertise, readability, and detail of online reviews positively influence their perceived usefulness, while sentiment has a negative effect. The interaction between detail, emotional appeal, and adjectives reinforces this usefulness, increasing consumer trust. These findings contribute to a better understanding of online consumer behavior, highlighting how textual elements make reviews more trustworthy and useful for decision making.
Downloads
References
Abeysinghe, P., & Bandara, T. (2022). A novel self-learning approach to overcome incompatibility on TripAdvisor reviews. Data Science and Management, 5(1), 1-10. https://doi.org/10.1016/j.dsm.2022.02.001
Agarwal, A. K., Guntuku, S. C., Meisel, Z. F., Pelullo, A., Kinkle, B., & Merchant, R. M. (2022). Analyzing online reviews of substance use disorder treatment facilities in the USA using machine learning. Journal of General Internal Medicine, 1-4. https://doi.org/10.1007/s11606-021-06618-7
Ahn, J. J., Choi, E. K. C., & Joung, H. W. (2022). Promoting hotel upselling: The effect of message appeal and de-livery setting on consumer attitude and purchase intention. Journal of Hospitality and Tourism Manage-ment, 52, 295-303. https://doi.org/10.1016/j.jhtm.2022.07.009
Albers‐Miller, N. D., & Stafford, M. R. (1999). An international analysis of emotional and rational appeals in ser-vices vs goods advertising. Journal of consumer marketing, 16(1), 42-57. https://doi.org/10.1108/07363769910250769
Aureliano-Silva, L., Leung, X. & Spers, E. E. (2021). The effect of online reviews on restaurant visit intentions: Applying signaling and involvement theories. Journal of Hospitality and Tourism Technology, 12(4), 672-688. https://doi.org/10.1108/JHTT-06-2020-0143
Beldad, A., Avicenna, F., & De Vries, S. (2017). The effects of online review message appeal and online review source across two product types on review credibility, product attitude, and purchase intention. In HCI in Business, Government and Organizations. Supporting Business: 4th International Conference, HCIBGO 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings, Part II 4 (pp. 163-173). Springer International Publishing.
Bortoluzzi, D. A., Lunkes, R. J., Santos, E. A. dos, & Mendes, A. C. A. (2020). Effect of online hotel reviews on the relationship between defender and prospector strategies and management controls. International Jour-nal of Contemporary Hospitality Management, 32(12), 3721–3745. https://doi.org/10.1108/IJCHM-04-2020-0297
Brightlocal, 2024. Local Consumer Review Survey 2024: Trends, Behaviors, and Platforms Explored. https://www.brightlocal.com/research/local-consumer-review-survey/ Acesso em 05 de novembro de 2024.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. https://doi.org/10.48550/arXiv.2005.14165
Brum, H. B., & Nunes, M. D. G. V. (2017). Building a sentiment corpus of tweets in Brazilian Portuguese. arXiv preprint arXiv:1712.08917. https://doi.org/10.48550/arXiv.1712.08917
Burton, A. L. (2021). OLS (Linear) regression. The encyclopedia of research methods in criminology and Criminal Justice, 2, 509-514. https://doi.org/10.1002/9781119111931.ch104
Casado-Díaz, A. B., Andreu, L., Beckmann, S. C., & Miller, C. (2020). Negative online reviews and webcare strate-gies in social media: effects on hotel attitude and booking intentions. Current Issues in Tourism, 23(4), 418-422. https://doi.org/10.1080/13683500.2018.1546675
Chanwisitkul, P., Shahgholian, A., & Mehandjiev, N. (2018, July). The reason behind the rating: text mining of online hotel reviews. In 2018 IEEE 20th Conference on Business Informatics (CBI) (Vol. 1, pp. 149-157). IEEE. https://doi.org/10.1109/CBI.2018.00025
Chen, Y. F. & Law, R. (2016). A review of research on electronic word-of-mouth in hospitality and tourism man-agement. International Journal of Hospitality & Tourism Administration, 17(4), 347-372. https://doi.org/10.1080/15256480.2016.1226150
Cheung, C. M., Lee, M. K., & Rabjohn, N. (2008). The impact of electronic word‐of‐mouth: The adoption of online opinions in online customer communities. Internet research, 18(3), 229-247. https://doi.org/10.1108/10662240810883290
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Mar-keting Research, 43(3), 345-354. https://doi.org/10.1509/jmkr.43.3.345
Chowdhary, K., & Chowdhary, K. R. (2020). Natural language processing. Fundamentals of artificial intelligence, Springer, Nova Delhi, 603-649. https://doi.org/10.1007/978-81-322-3972-7_19
Chua, A. Y., & Banerjee, S. (2015). Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth. Journal of the Association for Information Science and Technology, 66(2), 354-362. https://doi.org/10.1002/asi.23180
Collinger, T., Malthouse, E., Maslowska, E., Wang, R., Kim, S. J., & Askalidis, Y. (2017). How online reviews influ-ence sales. Medill IMC Spiegel Research Center.
De Pelsmacker, P., Dens, N., & Kolomiiets, A. (2018). The impact of text valence, star rating and rated useful-ness in online reviews. International Journal of Advertising, 37(3), 340-359. https://doi.org/10.1080/02650487.2018.1424792
Ebaid, H. A. (2018). Adjectives as persuasive tools: The case of product naming. Open Journal of Modern Lin-guistics, 8(6), 262-293. https://doi.org/10.4236/ojml.2018.86022
Evans, A. M., Stavrova, O., & Rosenbusch, H. (2021). Expressions of doubt and trust in online user reviews. Computers in Human Behavior, 114, 106556. https://doi.org/10.1016/j.chb.2020.106556
Fang, B., Ye, Q., Kucukusta, D., & Law, R. (2016). Analysis of the perceived value of online tourism reviews: Influ-ence of readability and reviewer characteristics. Tourism Management, 52, 498-506. https://doi.org/10.1016/j.tourman.2015.07.018
Feng, W., Liu, Y., & Li, D. (2022). Emotional or rational? The congruence effect of message appeals and country stereotype on tourists' international travel intentions. Annals of Tourism Research, 95, 103423. https://doi.org/10.1016/j.annals.2022.103423
Ferreira, J. B., de Freitas, A. S., Guaraná, E. R., de Lima, T. V., Rodrigues, J. W., & Giovannini, C. J. (2016). O im-pacto do boca-a-boca online: um estudo sobre a adoção de opiniões em comunidades de consumidores online. Tourism & Management Studies, 12(2), 28-37. https://doi.org/10.18089/tms.2016.12204
Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informa-tional and normative influences in e-WOM. Journal of Business Research, 68(6), 1261-1270. https://doi.org/10.1016/j.jbusres.2014.11.006
Gloriafood. (2021). The Importance of Online Reviews for Restaurants & How to Get More. Recuperado em 24 de julho 2024, em https://www.gloriafood.com/importance-of-online-reviews-for-restaurants
Gunning, R. (1969). The fog index after twenty years. Journal of Business Communication, 6(2), 3-13. https://doi.org/10.1177/002194366900600202
Harmo-Abrasel (2024) State of Reputation 2023/24 Panorama dos Reviws no Setor de Bares e Restaurantes Recuperado em 26 de março de 2025, em https://harmo.me/wp-content/uploads/2024/12/MKT-SOR_Abrasel_2023_Panorama-de-reviews-no-setor-de-bares-e-restaurantes-v-final-2.pdf
He, P., Gao, J., & Chen, W. (2021). Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543. https://doi.org/10.48550/arXiv.2111.09543
Huang, A. H., Chen, K., Yen, D. C., & Tran, T. P. (2015). A study of factors that contribute to online review helpful-ness. Computers in Human Behavior, 48, 17-27. https://doi.org/10.1016/j.chb.2015.01.010
Jang, S.; Chung, J. & Rao, V. R. (2021). The importance of functional and emotional content in online consumer reviews for product sales: Evidence from the mobile gaming market. Journal of Business Re-search, 130, 583-593. https://doi.org/10.1016/j.jbusres.2019.09.027
Ke, Q., & Wang, W. (2013). The Adjective Frequency in Advertising English Slogans. Theory & Practice in Lan-guage Studies (TPLS), 3(2). https://doi.org/10.4304/tpls.3.2.275-284
Korfiatis, N., García-Bariocanal, E., & Sánchez-Alonso, S. (2012). Evaluating content quality and helpfulness of online product reviews: The interplay of review helpfulness vs. review content. Electronic Commerce Research and Applications, 11(3), 205-217. https://doi.org/10.1016/j.elerap.2011.10.003
Laurer, M., Van Atteveldt, W., Casas, A., & Welbers, K. (2024). Less annotating, more classifying: Addressing the data scarcity issue of supervised machine learning with deep transfer learning and BERT-NLI. Political Analysis, 32(1), 84-100. https://doi.org/10.1017/pan.2023.20
Lee, S. G., Trimi, S., & Yang, C. G. (2018). Perceived usefulness factors of online reviews: a study of Amazon. com. Journal of computer information systems, 58(4), 344-352. https://doi.org/10.1080/08874417.2016.1275954
Li, H., Wang, C. R., Meng, F., & Zhang, Z. (2019). Making restaurant reviews useful and/or enjoyable? The im-pacts of temporal, explanatory, and sensory cues. International Journal of Hospitality Management, 83, 257-265. https://doi.org/10.1016/j.ijhm.2018.11.002
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. https://doi.org/10.48550/arXiv.1907.11692
Liu, Z. & Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140-151. https://doi.org/10.1016/j.tourman.2014.09.020
Liu-Lastres, B., Guo, Y., & Liu, H. (2024). Hotel crisis communication on social media: effects of message appeal. Anatolia, 35(1), 56-66. https://doi.org/10.1080/13032917.2022.2119590
Lo, A. S., & Yao, S. S. (2019). What makes hotel online reviews credible? An investigation of the roles of reviewer expertise, review rating consistency and review valence. International Journal of Contemporary Hospital-ity Management, 31(1), 41-60. https://doi.org/10.1108/IJCHM-10-2017-0671
Lopes, A. I., Dens, N., De Pelsmacker, P., & De Keyzer, F. (2021). Which cues influence the perceived usefulness and credibility of an online review? A conjoint analysis. Online Information Review, 45(1), 1-20. https://doi.org/10.1108/OIR-09-2019-0287
Lucini, F. R., Tonetto, L. M., Fogliatto, F. S., & Anzanello, M. J. (2020). Text mining approach to explore dimensions of airline customer satisfaction using online customer reviews. Journal of Air Transport Management, 83, 101760. https://doi.org/10.1016/j.jairtraman.2019.101760
Luo, L., Duan, S., Shang, S., & Pan, Y. (2021). What makes a helpful online review? Empirical evidence on the effects of review and reviewer characteristics. Online Information Review, 45(3), 614-632. https://doi.org/10.1108/OIR-05-2020-0186
Malik, M. S. I. (2020). Predicting users’ review helpfulness: the role of significant review and reviewer character-istics. Soft Computing, 24(18), 13913-13928. https://doi.org/10.1007/s00500-020-04767-1
Monteiro, J., Malagueño, R., Lunkes, R. J., & Santos, E. A. (2022). The effectiveness of value-and calculation-based management controls in hotel. International Journal of Hospitality Management, 102, 103156. https://doi.org/10.1016/j.ijhm.2022.103156
Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS quarterly, 34(1), 185-200. https://doi.org/10.2307/20721420
Oliveira, R. D. C., Baldam, E. C. G. D. R., Costa, F. R. D., & Pelissari, A. S. (2020). A influência da percepção de utilidade de avaliações online na intenção de compra de serviços de hotelaria. Revista Brasileira de Pesquisa em Turismo, 14, 30-45. https://doi.org/10.7784/rbtur.v14i2.1695
Park, S., & Nicolau, J. L. (2015). Asymmetric effects of online consumer reviews. Annals of Tourism Research, 50, 67-83. https://doi.org/10.1016/j.annals.2014.10.007
Park, E. et al. (2020). Understanding customers’ hotel revisiting behaviour: a sentiment analysis of online feed-back reviews. Current Issues in Tourism, 23(5), 605–611. https://doi.org/10.1080/13683500.2018.1549025
Purnawirawan, N., De Pelsmacker, P., & Dens, N. (2012). Balance and sequence in online reviews: How per-ceived usefulness affects attitudes and intentions. Journal of Interactive Marketing, 26(4), 244-255. https://doi.org/10.1016/j.intmar.2012.04.002
Racherla, P., & Friske, W. (2012). Perceived ‘usefulness’ of online consumer reviews: An exploratory investiga-tion across three services categories. Electronic commerce research and applications, 11(6), 548-559. https://doi.org/10.1016/j.elerap.2012.06.003
Roy, G. (2023). Travelers’ online review on hotel performance–Analyzing facts with the Theory of Lodging and sentiment analysis. International Journal of Hospitality Management, 111, 103459. https://doi.org/10.1016/j.ijhm.2023.103459
Schneider, E. T. R., Gumiel, Y. B., de Oliveira, L. F. A., de Oliveira Montenegro, C., Barzotto, L. R., Moro, C., ... & Paraiso, E. C. (2023). Developing a transformer-based clinical part-of-speech tagger for brazilian portu-guese. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1086
Souza, F., Nogueira, R., & Lotufo, R. (2020). BERTimbau: pretrained BERT models for Brazilian Portuguese. In Brazilian conference on intelligent systems (pp. 403-417). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61377-8_28
Srivastava, V. & Kalro, A. D. (2019). Enhancing the helpfulness of online consumer reviews: the role of latent (content) factors. Journal of Interactive Marketing, 48(1), 33-50. https://doi.org/10.1016/j.intmar.2018.12.003
Standing, C., Holzweber, M., & Mattsson, J. (2016). Exploring emotional expressions in e-word-of-mouth from online communities. Information Processing & Management, 52(5), 721-732. https://doi.org/10.1016/j.ipm.2016.01.001
TripAdvisor (2024). Media Center. Recuperado em 05 de setembro de 2024, de https://tripadvisor.mediaroom.com/US-about-us
Van der Zee, E., & Bertocchi, D. (2018). Finding patterns in urban tourist behaviour: A social network analysis approach based on TripAdvisor reviews. Information Technology & Tourism, 20(1), 153-180. https://doi.org/10.1007/s40558-018-0128-5
Wang, Y., & Kuchmaner, C. A. (2024). Revisiting online reviews: Signals of latent reviewer traits mediate the review length-helpfulness relationship. Journal of Marketing Theory and Practice, 32(3), 346-361. https://doi.org/10.1080/10696679.2023.2196636
Willemsen, L. M., Neijens, P. C., Bronner, F., & De Ridder, J. A. (2011). “Highly recommended!” The content char-acteristics and perceived usefulness of online consumer reviews. Journal of Computer-Mediated Com-munication, 17(1), 19-38. https://doi.org/10.1111/j.1083-6101.2011.01551.x
Yang, S. B., Hlee, S., Lee, J., & Koo, C. (2017). An empirical examination of online restaurant reviews on Yelp. com: A dual coding theory perspective. International Journal of Contemporary Hospitality Management, 29(2), 817-839. https://doi.org/10.1108/IJCHM-11-2015-0643
Zakarija, I., Škopljanac-Mačina, F., Marušić, H., & Blašković, B. (2024). A Sentiment Analysis Model Based on User Experiences of Dubrovnik on the Tripadvisor Platform. Applied Sciences, 14(18), 8304. https://doi.org/10.3390/app14188304
Zhai, M.; Wang, X. & Zhao, X. (2024). The importance of online customer reviews characteristics on remanufac-tured product sales: Evidence from the mobile phone market on Amazon. com. Journal of Retailing and Consumer Services, 77, 103677. https://doi.org/10.1016/j.jretconser.2023.103677
Zhang, W., & Watts, S. A. (2008). Capitalizing on content: Information adoption in two online communities. Jour-nal of the association for information systems, 9(2), 73-94. https://doi.org/10.17705/1jais.00149
Zhang, H., Sun, J., Liu, F., & G. Knight, J. (2014). Be rational or be emotional: advertising appeals, service types and consumer responses. European Journal of Marketing, 48(11/12), 2105-2126. http://dx.doi.org/10.1108/EJM-10-2012-0613
Zhu, Z., Liu, J., & Dong, W. (2022). Factors correlated with the perceived usefulness of online reviews for con-sumers: a meta-analysis of the moderating effects of product type. Aslib Journal of Information Man-agement, 74(2), 265-288. https://doi.org/10.1108/AJIM-02-2021-0054
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gabriel Donadio Costa, Rogério João Lunkes, Fabricia Silva da Rosa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).