Modelos e determinantes da demanda turística internacional

perspectivas a partir da revisão sistemática da literatura para o período de 2000-2020

Autores

DOI:

https://doi.org/10.7784/rbtur.v16.2478

Palavras-chave:

Economia do Turismo, Demanda Turística, Revisão Sistemática da Literatura, Modelo de Demanda Turística, Determinantes da Demanda Turística

Resumo

O entendimento do processo de evolução das metodologias e do uso das variáveis que explicam a demanda turística é fundamental para compreender seus determinantes. Alguns estudos bibliométricos procuraram entender esse processo de evolução: Johnson e Ashworth (1990); Li, Song e Witt (2005) e Song, Qui e Park (2019). A maioria desses estudos tem se concentrado na discussão da evolução e eficiência dos modelos utilizados na análise e na previsão da demanda, dedicando pouca atenção às variáveis. Este artigo contribui para essa discussão avaliando a relação entre os modelos e as variáveis utilizadas na análise da demanda turística. Para isso, foi realizado um estudo bibliométrico nas principais bases de pesquisa internacional: Web of Science, Redalyc, Scielo, Spell e Publicações de Turismo, entre 2000 e 2020 (março) procurando responder duas perguntas: 1. Existe alguma relação entre a seleção dos modelos e o conjunto de variáveis utilizadas na demanda turística? 2. Existe alguma tendência na utilização de novas variáveis? O estudo constatou que, independente do modelo utilizado, a variável número de chegadas tem sido a mais utilizada para representar a demanda turística. Também foi observado que as variáveis independentes renda, preço e taxa de câmbio foram as mais recorrentes na literatura, havendo uma tendência para a incorporação de novas variáveis

Downloads

Não há dados estatísticos.

Biografia do Autor

Isabela Lima Pinheiro da Camara, Universidade Estadual do Paraná (UNESPAR) campus de Campo Mourão, PR, Brasil.

Professora no Colegiado de Turismo e Meio Ambiente da Universidade Estadual do Paraná (UNESPAR) campus de Campo Mourão. Mestre em Turismo pela Universidade Federal Fluminense (PPGTUR-UFF) realizado com bolsa CAPES (2019). Bacharel em Turismo pela Universidade Federal Fluminense (2016). Contribuições: Concepção da pesquisa, revisão da literatura, coleta de dados, análise de dados e discussão.

João Evangelista Dias Monteiro, Universidade Federal Fluminense (UFF), Niteroi, RJ, Brasil.

Doutor em Economia pela Universidade Federal do Rio de Janeiro, Professor Associado do Departamento Turismo e Hotelaria da Universidade Federal Fluminense, onde leciona e pesquisa na área de Economia do Turismo. Diretor da Faculdade de Turismo e Hotelaria da UFF. Coordenador do Observatório do Turismo da Universidade Federal Fluminense. Contribuições: Concepção da pesquisa, análise de dados e discussão dos resultados.

Osiris Marques, Universidade Federal Fluminense (UFF), Niteroi, RJ, Brasil.

Professor Associado do Departamento de Turismo da Faculdade de Turismo e Hotelaria (FTH) da Universidade Federal Fluminense e professor e pesquisador do Mestrado em Turismo (PPGTUR-UFF). Doutor (UFRJ/2007) e Mestre (UFF/2003) em Ciências Econômicas. Líder do Grupo de Pesquisa: Observatório do Turismo do Rio de Janeiro. Contribuições: Análise de dados e discussão dos resultados.

Referências

Agyeiwaah, E., & Adongo, R. (2016). Identifying core determinants of tourism demand in Hong Kong inbound markets. International Journal of Tourism Cities, 2(1), p. 17–28. https://doi.org/10.1108/IJTC-07-2015-0015

Ahmed, Y. A. (2015). Analytical Review of Tourism Demand Studies from 1960 to 2014. International Journal of Science and Research (IJSR), 14(1), p. 2319–7064. www.ijsr.net

Akter, H., Akhtar, S., & Ali, S. (2017). Tourism demand in Bangladesh: Gravity model analysis. Turizam: Međunarodni Znanstveno-Stručni Časopis, 65(3), p. 346–360.

Álvarez-Díaz, M., González-Gómez, M., & Otero-Giraldez, M. S. (2016). Modeling the tourism demand of emerging economies: The case of Russian tourist arrivals to Spain. Cuadernos de Economia-Spain, 39(110), p. 112–125. https://doi.org/10.1016/j.cesjef.2015.10.001

Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29(1), p. 19–31. https://doi.org/10.1016/j.tourman.2007.04.009

Balli, F., Balli, H. O., & Tangaroa, N. (2015). Research note: The impact of marketing expenditure on international tourism demand for the Cook Islands. Tourism Economics, 21(6), p. 1331–1343. https://doi.org/10.5367/te.2014.0407

Cho, V. (2010). A Study the Non-economic Determinants in Tourism Demand. International Journal Of Tourism Research, 12(July 2009), p. 307–320. https://doi.org/10.1002/jtr.749

Croes, R. R., & Vanegas, M. (2005). An econometric study of tourist arrivals in Aruba and its implications. Tourism Management, 26(6), p. 879–890. https://doi.org/10.1016/j.tourman.2004.04.007

Crouch, G. I. (1994a). The Study of International Tourism Demand: A Review of Findings. Journal of Travel Research, 33(1), p. 12–23. https://doi.org/10.1177/004728759403300102

Crouch, G. I. (1994b). The Study of International Tourism Demand: A Review of Findings. Journal of Travel Research, 33(1), p. 12–23. https://doi.org/10.1177/004728759403300102

Crouch, G. I. (1995). A meta-analysis of tourism demand. Annals of Tourism Research, 22(1), p. 103–118. https://doi.org/10.1016/0160-7383(94)00054-V

Dogru, T., Bulut, U., & Sirakaya-Turk, E. (2019). Modeling tourism demand: Theoretical and empirical considerations for future research. Tourism Economics, p. 1–16. https://doi.org/10.1177/1354816619894460

Durbarry, R. (2008). Tourism taxes: Implications for tourism demand in the UK. Review of Development Economics, 12(1), p. 21–36. https://doi.org/10.1111/j.1467-9361.2008.00432.x

Falk, M., & Vieru, M. (2019). International tourism demand to Finnish Lapland in the early winter season. Current Issues in Tourism, 22(11), p. 1312–1326. https://doi.org/10.1080/13683500.2017.1412406

Gani, A., & Clemes, M. D. (2017). The main determinants effecting international visitor arrivals in New Zealand: Some empirical evidence. Tourism Economics, 23(5), p. 921–940. https://doi.org/10.1177/1354816616656417

Garin-Munoz, T. (2009). Tourism in Galicia: domestic and foreign demand. Tourism Economics, 15(4), p. 753–769. https://doi.org/10.5367/000000009789955107

Garín-Muñoz, T., & Montero-Martín, L. F. (2007). Tourism in the Balearic Islands: A dynamic model for international demand using panel data. Tourism Management, 28(5), p. 1224–1235. https://doi.org/10.1016/j.tourman.2006.09.024

Ghalehkhondabi, I., Ardjmand, E., Young, W. A., & Weckman, G. R. (2019). A review of demand forecasting models and methodological developments within tourism and passenger transportation industry. Journal of Tourism Futures, 5(1), p. 75–93. https://doi.org/10.1108/JTF-10-2018-0061

Goh, C., & Law, R. (2011). The methodological progress of tourism demand forecasting: A review of related literature. Journal of Travel and Tourism Marketing, 28(3), p. 296–317. https://doi.org/10.1080/10548408.2011.562856

Habibi, F. (2017). The determinants of inbound tourism to Malaysia: a panel data analysis. Current Issues in Tourism, 20(9), p. 909–930. https://doi.org/10.1080/13683500.2016.1145630

Hu, M., & Song, H. (2019). Data source combination for tourism demand forecasting. Tourism Economics, 26(7), p. 1248–1265. https://doi.org/10.1177/1354816619872592

Husein, J., & Kara, S. M. (2020). Nonlinear ARDL estimation of tourism demand for Puerto Rico from the USA. Tourism Management, 77. https://doi.org/10.1016/j.tourman.2019.103998

Jerabek, T. (2019). The Effects of Selected Macroeconomic Variables on Tourism Demand for the South Moravian Region of the Czech Republic from Germany, Poland, Austria, and Slovakia. Comparative Economic Research-Central and Eastern Europe, 22(3), p. 25–43. https://doi.org/10.2478/cer-2019-0021

Johnson, P., & Ashworth, J. (1990). Modelling tourism demand: A summary review. Leisure Studies, 9(2), p. 145– 161. https://doi.org/10.1080/02614369000390131

Kronenberg, K., Fuchs, M., Salman, K., Lexhagen, M., & Hopken, W. (2016). Economic effects of advertising expenditures - a Swedish destination study of international tourists. Scandinavian Journal of Hospitality and Tourism, 16(4), p. 352–374. https://doi.org/10.1080/15022250.2015.1101013

Kulendran, N., & Wong, K. K. F. (2011). Determinants versus Composite Leading Indicators in Predicting Turning Points in Growth Cycle. Journal of Travel Research, 50(4), p. 417–430. https://doi.org/10.1177/0047287510373280

Li, G., Song, H., & Witt, S. F. (2005). Recent developments in econometric modeling and forecasting. Journal of Travel Research, 44(1), 82–99. https://doi.org/10.1177/0047287505276594

Li, G., Wong, K. K. F., Song, H., & Witt, S. F. (2006). Tourism Demand Forecasting: A Time Varying Parameter Error Correction Model. Journal of Travel Research, 45(2), p. 175–185. https://doi.org/10.1177/0047287506291596

Lim, C., & Zhu, L. (2018). Examining the link between meetings, incentive, exhibitions, and conventions (MICE) and tourism demand using generalized methods of moments (GMM): the case of Singapore. Journal of Travel & Tourism Marketing, 35(7), p. 846–855. https://doi.org/10.1080/10548408.2018.1435334

Moro, S., & Rita, P. (2016). Forecasting tomorrow’s tourist. Worldwide Hospitality and Tourism Themes, 8(6), 643– 653. https://doi.org/10.1108/WHATT-09-2016-0046

Moura, F. A., & Montini, A. D. Á. (2010). Modelagem da Demanda Turística Internacional para o Estado de São Paulo. Sociedade, Contabilidade e Gestão, 5(2), p. 133–147. https://doi.org/10.21446/scg_ufrj.v5i2.13207

Naudé, W. A., & Saayman, A. (2005). Determinants of tourist arrivals in Africa: A panel data regression analysis. Tourism Economics, 11(3), p. 365–391. https://doi.org/10.5367/000000005774352962

Nouri, B. A., & Soltani, M. (2017). Forecasting of Tourism Demand for Cyprus: Generalized Method of Moments. Journal of Applied Economics and Business Research, 7(2), p. 83–96. Onafowora, O. A., & Owoye, O. (2012). Modelling international tourism demand for the Caribbean. TOURISM ECONOMICS, 18(1), p. 159–180. https://doi.org/10.5367/te.2012.0102

Seetanah, B., Durbarry, R., & Ragodoo, J. F. N. (2010). Using the panel cointegration approach to analyse the determinants of tourism demand in South Africa. Tourism Economics, 16(3), p. 715–729. https://doi.org/10.5367/000000010792278437

Seetanah, B., & Sannassee, R. V. (2015). Marketing Promotion Financing and Tourism Development: The Case of Mauritius. Journal of Hospitality Marketing & Management, 24(2), p. 202–215. https://doi.org/10.1080/19368623.2014.914359

Sharma, C., & Pal, D. (2020). Exchange Rate Volatility and Tourism Demand in India: Unraveling the Asymmetric Relationship. Journal of Travel Research, 59(7), p. 1282–1297. https://doi.org/10.1177/0047287519878516

Song, H., Kim, J. H., & Yang, S. (2010). CONFIDENCE INTERVALS FOR TOURISM DEMAND ELASTICITY. Annals of Tourism Research, 37(2), p. 377–396. https://doi.org/10.1016/j.annals.2009.10.002

Song, H., & Li, G. (2008). Tourism demand modelling and forecasting: A review of recent research. Tourim Management, 29(2), p. 203–220. https://doi.org/10.1016/j.tourman.2007.07.016

Song, H., Li, G., Witt, S. F., & Fei, B. (2010). Tourism demand modelling and forecasting: how should demand be measured? Tourism Economics, 16(1, SI), p. 63–81. https://doi.org/10.5367/000000010790872213

Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting. Annals of Tourism Research, 75(September 2018), p. 338–362. https://doi.org/10.1016/j.annals.2018.12.001

Song, H., Romilly, P., & Liu, X. (2000). An empirical study of outbound tourism demand in the UK. Applied Economics, 32(5), p. 611–624. https://doi.org/10.1080/000368400322516

Song, H., Witt, S. F., & Li, G. (2003). Modelling and forecasting demand for Thai tourism. Tourism Economics, 9(4), p. 363–387. https://doi.org/10.5367/000000003322663186

Song, H., Witt, S. F., & Zhang, X. (2008). Developing a Web-based tourism demand forecasting system. Tourism Economics, 14(3), p. 445–468. https://doi.org/10.5367/000000008785633578

Tavares, J. M., & Leitao, N. C. (2017). The determinants of international tourism demand for Brazil. Tourism Economics, 23(4), p. 834–845. https://doi.org/10.5367/te.2016.0540

Ulucak, R., Yucel, A. G., & Ilkay, S. C. (2020). Dynamics of tourism demand in Turkey: Panel data analysis using gravity model. Tourism Economics, 26(8), p. 1394–1414. https://doi.org/10.1177/1354816620901956

UNWTO. (2020). UNWTO World Tourism Barometer: May 2020 – Special focus on the Impact of COVID-19. UNWTO World Tourism Barometer, May 2020 – Special Focus on the Impact of COVID-19, May. https://doi.org/10.18111/9789284421930

UNWTO. (2021). Tourist arrivals down 87% in january 2021 as UNWTO calls for stronger coordination to restart Tourism. https://www.unwto.org/taxonomy/term/347

Vanegas, M., & Croes, R. R. (2000). Evaluation of demand : US Tourists to Aruba. Annals of Tourism Research, 27(4), p. 946–963. https://doi.org/10.1016/S0160-7383(99)00114-0

Varian, H. R. (2010). Intermediate Microeconomics (J. Repcheck (ed.); 8th ed.). A modern Approach. Witt, S. F., & Witt, C. A. (1995). Forecasting tourism demand: A review of empirical research. International Journal of Forecasting, 11(3), p. 447–475. https://doi.org/10.1016/0169-2070(95)00591-7

Xu, L., Wang, S., Li, J., Tang, L., & Shao, Y. (2019). Modelling international tourism flows to China: A panel data analysis with the gravity model. Tourism Economics, 25(7), p. 1047–1069. https://doi.org/10.1177/1354816618816167

Zhang, Y. (2015). International arrivals to Australia: Determinants and the role of air transport policy. Journal of Air Transport Management, 44–45, p. 21–24. https://doi.org/10.1016/j.jairtraman.2015.02.004

Zhang, H. Q., & Kulendran, N. (2017). The Impact of Climate Variables on Seasonal Variation in Hong Kong Inbound Tourism Demand. Journal of Travel Research, 56 (1), p. 94–107. https://doi.org/10.1177/0047287515619692

Zhu, L., Lim, C., Xie, W., & Wu, Y. (2018). Modelling tourist flow association for tourism demand forecasting. Current Issues in Tourism, 21(8), p. 902–916. https://doi.org/10.1080/13683500.2016.1218827

Downloads

Publicado

2022-02-18

Edição

Seção

Artigos - Gestão do Turismo