Modelagem e previsão da procura por turismo internacional em Puno-Peru

Autores

DOI:

https://doi.org/10.7784/rbtur.v14i1.1606

Palavras-chave:

Sazonalidade, lago Titicaca, Peru, ARIMA, Cultura

Resumo

La industria del turismo en el Perú genera cerca de 1.1 millones de puestos de trabajo y aporta el 3.3% del PBI, lo que la convierte en una de sus principales actividades económicas, de esta forma el turismo deja de ser sólo una actividad comercial y se transforma en una herramienta para el desarrollo de la población peruana especialmente en las regiones con alta tasa de pobreza y con numerosos atractivos turísticos como es el caso de la región de Puno con una tasa de pobreza de 24.2% que está ubicada en el sur del país y que cuenta con numerosos atractivos turísticos de tipo naturales, históricos, culturales y gastronómicos. El objetivo de esta investigación es modelar y proyectar la demanda de turistas internacionales que visitan Puno utilizando la metodología ARIMA de Box-Jenkins, para ello el estudio considera información mensual de arribo de turistas internacionales entre los años 2003 a 2017. Finalmente, utilizando los estadísticos MAPE, Z, r, Criterio de Información de Akaike (AIC) y Criterio de Schwarz (SC) se identificó al modelo SARIMA (6, 1, 24)(1, 0, 1)12 como el más eficiente para el modelamiento y proyección de la demanda del turismo internacional en la región de Puno.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luis Francisco Laurente Blanco, Universidad Nacional de Altiplano, Puno, Peru

Ingeniero Economista por la Universidad Nacional del Altiplano con Maestría en Informática por la misma universidad, con estudio de posgrado en matemáticas y estadística en la USP e IMPA del Brasil, su área de interés es la economía matemática. Actualmente realiza investigaciones en el Grupo Fibonacci de Ciencias Económicas (GRFICE) con varios libros y artículos publicados.

Ronald Wilson Machaca Hancco, Universidad Nacional del Altiplano (UNAP)

Ingeniero Economista por la Universidad Nacional del Altiplano es Coordinador de Nivelación Escolar Voluntades en el Centro de Atención Residencial Sagrado Corazón de Jesús.

Referências

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Akal, M. (2004). Forecasting Turkey’s tourism revenues by ARMAX model. Tourism Management, 25(5), 565–580. https://doi.org/10.1016/j.tourman.2003.08.001

Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29 (October 2006), 19–31. https://doi.org/https://doi.org/10.1016/j.tourman.2007.04.009

Baillie, R. (1996). Long Memory Processes and Fractional Integration in Econometrics. Journal of Economet-rics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1

Banco Central de Reserva del Perú - BCRP. Gerencia Central de Estudios Económicos (2018). Producto Bruto Interno por sectores productivos (millones S/ 2007). Retrieved March 26, 2019, from https://estadisticas.bcrp.gob.pe/estadisticas/series/anuales/resultados/PM05000AA/html

Banco Central de Reserva del Perú – BCRP. Sucursal Puno. (2018). Síntesis de Actividad Económica, varios meses. Retrieved January 20, 2018, from http://www.bcrp.gob.pe/51-sucursales/sede-regional-puno.html

Botti, L.; Peypoch, N.; Randriamboarison, R.; & Solonandrasana, B. (2007). An Econometric Model of Tourism Demand in France. Tourismos: An International Multidisciplinary Journal of Tourism, 2(1), 115–126. Retrieved from http://mpra.ub.uni-muenchen.de/25390/

Box, G., & Jenkins, G. M. (1976). Time Series Analysis: forecasting and control. Oakland, California.

CAMARA. (2018). Cámara de Comercio de Lima - Sector turismo representa 3.3% del PBI y genera 1.1 mil-lones de empleos. Retrieved from https://www.camaralima.org.pe/repositorioaps/0/0/par/r820_2/informe economico.pdf

Cayo, N., & Apaza, A. (2017). Evaluación de la ciudad de Puno como destino turístico - Perú. Comuni@cción, 8(2), 116–124. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2219-71682017000200005

Chaitip, P., & Chaiboonsri, C. (2015). Forecasting with X-12-ARIMA y ARFIMA: International Tourist Arrivals to India. Annals of the University of Petroşani, Economics, 9(3), 147–162. Retrieved from http://repositorio.ana.gob.pe/handle/ANA/1564

Chan, F., Lim, C., & McAleer, M. (2005). Modelling multivariate international tourism demand and volatility. Tourism Management, 26(3), 459–471. https://doi.org/10.1016/j.tourman.2004.02.013

Chang, C., Sriboonchitta, S., & Wiboonpongse, A. (2009). Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation, Mathematics and Computers in Simulation, 79, 1730–1744. https://doi.org/10.1016/j.matcom.2008.09.006

Chokethaworn, K., Wiboonponse, A., Sriboonchitta, S., Sriboonjit, J., Chaiboonsri, C., & Chaitip, P. (2010). In-ternational Tourists’ Expenditures in Thailand: A Modelling of the ARFIMA-FIGARCH Approach. The Thailand Econometrics Society, 10(January), 85–98.

Chow, G. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica, 28(3), 591–605. https://doi.org/10.2307/1913018

Chu, F. L. (2008). A Fractionally Integrated Autoregressive Moving Average Approach to Forecasting Tourism Demand. Tourism Management, 29(1), 79–88. https://doi.org/10.1016/j.tourman.2007.04.003

CORREO. (2017). Turismo y empleo en la región Puno. Retrieved March 26, 2019, from https://diariocorreo.pe/peru/turismo-en-la-region-puno-genera-90-mil-empl-7289/

Coshall, J. T. (2009). Combining volatility and smoothing forecasts of UK demand for international tourism. Tourism Management, 30(4), 495–511. https://doi.org/10.1016/j.tourman.2008.10.010

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348

du Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: An application to inter-national tourism demand. International Journal of Forecasting, 19(3), 435–451. https://doi.org/10.1016/S0169-2070(02)00057-2

Durbin, J., & Watson, G. S. (1950). Testing for Serial Correlation in Least Squares Regression. I. Biometrika Trust, 58(1), 409–428. https://doi.org/10.2307/2332391

Durbin, J., & Watson, G. S. (1971). Testing for serial correlation in least squares regression. III. Biometrika, 58(1), 1–19. https://doi.org/10.1093/biomet/58.1.1

GESTION. (2017). Perú: Llegada de turistas por país. Retrieved March 25, 2019, from https://gestion.pe/economia/llegaran-4-8-millones-turistas-internacionales-peru-ano-10-2018-258028

Granger, C., & Joyeux, R. (1980). An Introduction to Long-Memory Time Series Models and Fractional Differenc-ing. Journal of Time Series Analysis, I(1), 15–29. https://doi.org/https://doi.org/10.1111/j.1467-9892.1980.tb00297.x

Greenidge, K. (2001). Forecasting Tourism Demand An STM Approach. Annals of Tourism Research, 28(1), 98–112. https://doi.org/https://10.1016/S0160-7383(00)00010-4

Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165

Instituto Nacional de Estadística e Informática - INEI (2018a). Pobreza por departamentos del Perú. Retrieved February 4, 2019, from https://www.inei.gob.pe/estadisticas/indice-tematico/living-conditions-and-poverty/

Instituto Nacional de Estadística e Informática - INEI. (2018b). Peru, PBI por departamentos según actividades económicas. Retrieved March 26, 2019, from https://www.inei.gob.pe/estadisticas/indice-tematico/pbi-de-los-departamentos-segun-actividades-economicas-9110/

INRENA. (1995) Evaluacion de la contaminacion del lago titicaca. Retrieved from http://repositorio.ana.gob.pe/handle/ANA/1564

Jarque, C., & Bera, A. (1980). Efficient tests for normality, homoscedasticity and serial independence of re-gression residuals. Economics Letters, 6(4), 255–259. https://doi.org/10.1016/0165-1765(81)90035-5

Jarque, C., & Bera, A. (1981). Efficient tests for normality, homoscedasticity and serial independence of re-gression residuals Monte Carlo Evidence. Journal of the American Statistical Association, 7, 313–318. https://doi.org/doi:10.1016/0165-1765(81)90035-5

Jarque, C., & Bera, A. (1987). A test for Normality of observations and Regression Residuals. International Statistical Review, 55(2), 163–172. https://doi.org/10.2307/1403192

Kwiatkowski, D.; Phillips, P.; Schmidt, P.; & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y

Laurente, L. & Poma, R. (2016). Introducción a la teoría de las probabilidades (Primera Ed). Puno, Perú.

Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tour-ism Management, 20(1), 89–97. https://doi.org/10.1016/S0261-5177(98)00094-6

Lee, C. K.; Song, H. J.; & Mjelde, J. W. (2008). The forecasting of International Expo tourism using quantitative and qualitative techniques. Tourism Management, 29(6), 1084–1098. https://doi.org/10.1016/j.tourman.2008.02.007

Lewis, C. D. (1982). Industrial and business forecasting methods. London: Butterworths. Retrieved from http://interstat.statjournals.net/YEAR/2008/articles/0810005.pdf

Lim, C., & Mcaleer, M. (1999). A seasonal analysis of Malaysian tourist arrivals to Australia. Mathematics and Computers in Simulation, 48(4), 573–583. https://doi.org/https://10.1016/S0378-4754(99)00038-5

Ljung, G., & Box, G. (1978). Biometrika Trust On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297–303. https://doi.org/https://doi.org/10.1093/biomet/65.2.297

Loganathan, N., & Ibrahim, Y. (2010). Forecasting International Tourism Demand in Malaysia Using Box Jen-kins Sarima Application. South Asian Journal of Tourism and Heritage, 3(2), 50–60.

Mackinnon, J. (1996). Numerical Distribution Functions for Unit Root and Cointegration Tests. Journal of Ap-plied Econometrics, 11(6), 601–618. https://doi.org/https://doi.org/10.1002/(SICI)1099-1255(199611)11:6<601::AID-JAE417>3.0.CO;2-T

Mamani, L. (2016). Impacto socioeconómico del turismo rural comunitario de Karina-Chucuito. Universidad Nacional del Altiplano. Retrieved from http://repositorio.unap.edu.pe/bitstream/handle/UNAP/1802/Articulo.pdf?sequence=1&isAllowed=y

MINCETUR. (2017a). Perú: Arribo de visitantes extranjeros a establecimientos de hospedaje, según región. Serie estadística 2003-2017. Retrieved January 17, 2018, from http://datosturismo.mincetur.gob.pe/appdatosTurismo/Content3.html

MINCETUR. (2017b). Perú: Llegada de turistas internacionales según país de residencia permanente. Re-trieved March 25, 2019, from http://datosturismo.mincetur.gob.pe/appdatosTurismo/Content1.html

MiViaje. (2018). Descubre las islas de los uros en el lago Titicacaca - Panel fotográfico. Retrieved March 25, 2019, from https://miviaje.com/las-islas-de-los-uros-lago-titicaca/

Nanthakumar, L., Subramaniam, T., & Kogid, M. (2012). Is “Malaysia Truly Asia”? Forecasting tourism demand from ASEAN using SARIMA approach. Tourismos, 7(1), 367–381. Retrieved from http://www.chios.aegean.gr/tourism/VOLUME_7_No1_art20.pdf

Organización Mundial del Turismo - OMT. (2017). Panorama OMT del turismo internacional. Retrieved from http://www.e-unwto.org/doi/book/10.18111/9789284419043

Peiris, H. (2016). A Seasonal ARIMA Model of Tourism Forecasting: The Case of Sri Lanka. Journal of Tourism, Hospitality and Sports, 22, 98–109. Retrieved from https://www.iiste.org/Journals/index.php/JTHS/article/view/33831

Peiris, M. S., & Perera, B. J. C. (1988). On Prediction with Fractionally Differenced Arima Models. Journal of Time Series Analysis, 9(3), 215–220. https://doi.org/10.1111/j.1467-9892.1988.tb00465.x

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335

Psillakis, Z., Alkiviadis, P., & Kanellopoulos, D. (2009). Low cost inferential forecasting and tourism demand in accommodation industry. Tourismos: An International Multidisciplinary Journal of Tourism, 4(2), 47–68.

PUNO. (2017). Principales recursos turísticos em Puno. Retrieved from http://www.bcrp.gob.pe/docs/Sucursales/Puno/Puno-Atractivos.pdf

Ray, B. K. (1993). Modeling Long Memory Processes for Optimal Long Range Prediction. Journal of Time Series Analysis, 14(5), 511–525. https://doi.org/10.1111/j.1467-9892.1993.tb00161.x

Reisen, V. (1994). Estimation of the fractional difference parameter in the ARIMA (p,d,q) model using the smoothed periodogram. Journal of Time Series Analysis, 15(3), 335–350. https://doi.org/https://doi.org/10.1111/j.1467-9892.1994.tb00198.x

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136

Shareef, R., & McAleer, M. (2005). Modelling International Tourism Demand and Volatility in Small Island Tour-ism Economies. International Journal of Tourism Research, 7(6), 313-333. https://doi.org/10.1002/jtr.538

Shitan, M. (2008). Time series modelling of tourist arrivals to Malaysia. Department of Mathemat-ics, Faculty of Science, and Applied & Computational Statistics Laboratory, Institute for Mathemati-cal Research, Universiti Putra Malaysia. Retrieved from http://interstat.statjournals.net/YEAR/2008/articles/0810005.pdf

Zhou, T., Bonham, C., & Gangnes, B. (2007). Modeling the supply and demand for tourism: a fully identified VECM approach. Department of Economics and University of Hawaii Economic Reserch Organization. Universi-ty of Hawaii at Manoa. Working Paper No. 07-17, July 20, 2007. https://doi.org/10.1001/archinte.165.8.854

Publicado

2020-01-14

Como Citar

Laurente Blanco, L. F., & Machaca Hancco, R. W. (2020). Modelagem e previsão da procura por turismo internacional em Puno-Peru. Revista Brasileira De Pesquisa Em Turismo, 14(1), 34–55. https://doi.org/10.7784/rbtur.v14i1.1606

Edição

Seção

Artigos