Modelagem e previsão da procura por turismo internacional em Puno-Peru
DOI:
https://doi.org/10.7784/rbtur.v14i1.1606Palavras-chave:
Sazonalidade, lago Titicaca, Peru, ARIMA, CulturaResumo
La industria del turismo en el Perú genera cerca de 1.1 millones de puestos de trabajo y aporta el 3.3% del PBI, lo que la convierte en una de sus principales actividades económicas, de esta forma el turismo deja de ser sólo una actividad comercial y se transforma en una herramienta para el desarrollo de la población peruana especialmente en las regiones con alta tasa de pobreza y con numerosos atractivos turísticos como es el caso de la región de Puno con una tasa de pobreza de 24.2% que está ubicada en el sur del país y que cuenta con numerosos atractivos turísticos de tipo naturales, históricos, culturales y gastronómicos. El objetivo de esta investigación es modelar y proyectar la demanda de turistas internacionales que visitan Puno utilizando la metodología ARIMA de Box-Jenkins, para ello el estudio considera información mensual de arribo de turistas internacionales entre los años 2003 a 2017. Finalmente, utilizando los estadísticos MAPE, Z, r, Criterio de Información de Akaike (AIC) y Criterio de Schwarz (SC) se identificó al modelo SARIMA (6, 1, 24)(1, 0, 1)12 como el más eficiente para el modelamiento y proyección de la demanda del turismo internacional en la región de Puno.
Downloads
Referências
Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
Akal, M. (2004). Forecasting Turkey’s tourism revenues by ARMAX model. Tourism Management, 25(5), 565–580. https://doi.org/10.1016/j.tourman.2003.08.001
Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29 (October 2006), 19–31. https://doi.org/https://doi.org/10.1016/j.tourman.2007.04.009
Baillie, R. (1996). Long Memory Processes and Fractional Integration in Econometrics. Journal of Economet-rics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1
Banco Central de Reserva del Perú - BCRP. Gerencia Central de Estudios Económicos (2018). Producto Bruto Interno por sectores productivos (millones S/ 2007). Retrieved March 26, 2019, from https://estadisticas.bcrp.gob.pe/estadisticas/series/anuales/resultados/PM05000AA/html
Banco Central de Reserva del Perú – BCRP. Sucursal Puno. (2018). Síntesis de Actividad Económica, varios meses. Retrieved January 20, 2018, from http://www.bcrp.gob.pe/51-sucursales/sede-regional-puno.html
Botti, L.; Peypoch, N.; Randriamboarison, R.; & Solonandrasana, B. (2007). An Econometric Model of Tourism Demand in France. Tourismos: An International Multidisciplinary Journal of Tourism, 2(1), 115–126. Retrieved from http://mpra.ub.uni-muenchen.de/25390/
Box, G., & Jenkins, G. M. (1976). Time Series Analysis: forecasting and control. Oakland, California.
CAMARA. (2018). Cámara de Comercio de Lima - Sector turismo representa 3.3% del PBI y genera 1.1 mil-lones de empleos. Retrieved from https://www.camaralima.org.pe/repositorioaps/0/0/par/r820_2/informe economico.pdf
Cayo, N., & Apaza, A. (2017). Evaluación de la ciudad de Puno como destino turístico - Perú. Comuni@cción, 8(2), 116–124. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2219-71682017000200005
Chaitip, P., & Chaiboonsri, C. (2015). Forecasting with X-12-ARIMA y ARFIMA: International Tourist Arrivals to India. Annals of the University of Petroşani, Economics, 9(3), 147–162. Retrieved from http://repositorio.ana.gob.pe/handle/ANA/1564
Chan, F., Lim, C., & McAleer, M. (2005). Modelling multivariate international tourism demand and volatility. Tourism Management, 26(3), 459–471. https://doi.org/10.1016/j.tourman.2004.02.013
Chang, C., Sriboonchitta, S., & Wiboonpongse, A. (2009). Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation, Mathematics and Computers in Simulation, 79, 1730–1744. https://doi.org/10.1016/j.matcom.2008.09.006
Chokethaworn, K., Wiboonponse, A., Sriboonchitta, S., Sriboonjit, J., Chaiboonsri, C., & Chaitip, P. (2010). In-ternational Tourists’ Expenditures in Thailand: A Modelling of the ARFIMA-FIGARCH Approach. The Thailand Econometrics Society, 10(January), 85–98.
Chow, G. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica, 28(3), 591–605. https://doi.org/10.2307/1913018
Chu, F. L. (2008). A Fractionally Integrated Autoregressive Moving Average Approach to Forecasting Tourism Demand. Tourism Management, 29(1), 79–88. https://doi.org/10.1016/j.tourman.2007.04.003
CORREO. (2017). Turismo y empleo en la región Puno. Retrieved March 26, 2019, from https://diariocorreo.pe/peru/turismo-en-la-region-puno-genera-90-mil-empl-7289/
Coshall, J. T. (2009). Combining volatility and smoothing forecasts of UK demand for international tourism. Tourism Management, 30(4), 495–511. https://doi.org/10.1016/j.tourman.2008.10.010
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348
du Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: An application to inter-national tourism demand. International Journal of Forecasting, 19(3), 435–451. https://doi.org/10.1016/S0169-2070(02)00057-2
Durbin, J., & Watson, G. S. (1950). Testing for Serial Correlation in Least Squares Regression. I. Biometrika Trust, 58(1), 409–428. https://doi.org/10.2307/2332391
Durbin, J., & Watson, G. S. (1971). Testing for serial correlation in least squares regression. III. Biometrika, 58(1), 1–19. https://doi.org/10.1093/biomet/58.1.1
GESTION. (2017). Perú: Llegada de turistas por país. Retrieved March 25, 2019, from https://gestion.pe/economia/llegaran-4-8-millones-turistas-internacionales-peru-ano-10-2018-258028
Granger, C., & Joyeux, R. (1980). An Introduction to Long-Memory Time Series Models and Fractional Differenc-ing. Journal of Time Series Analysis, I(1), 15–29. https://doi.org/https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
Greenidge, K. (2001). Forecasting Tourism Demand An STM Approach. Annals of Tourism Research, 28(1), 98–112. https://doi.org/https://10.1016/S0160-7383(00)00010-4
Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165
Instituto Nacional de Estadística e Informática - INEI (2018a). Pobreza por departamentos del Perú. Retrieved February 4, 2019, from https://www.inei.gob.pe/estadisticas/indice-tematico/living-conditions-and-poverty/
Instituto Nacional de Estadística e Informática - INEI. (2018b). Peru, PBI por departamentos según actividades económicas. Retrieved March 26, 2019, from https://www.inei.gob.pe/estadisticas/indice-tematico/pbi-de-los-departamentos-segun-actividades-economicas-9110/
INRENA. (1995) Evaluacion de la contaminacion del lago titicaca. Retrieved from http://repositorio.ana.gob.pe/handle/ANA/1564
Jarque, C., & Bera, A. (1980). Efficient tests for normality, homoscedasticity and serial independence of re-gression residuals. Economics Letters, 6(4), 255–259. https://doi.org/10.1016/0165-1765(81)90035-5
Jarque, C., & Bera, A. (1981). Efficient tests for normality, homoscedasticity and serial independence of re-gression residuals Monte Carlo Evidence. Journal of the American Statistical Association, 7, 313–318. https://doi.org/doi:10.1016/0165-1765(81)90035-5
Jarque, C., & Bera, A. (1987). A test for Normality of observations and Regression Residuals. International Statistical Review, 55(2), 163–172. https://doi.org/10.2307/1403192
Kwiatkowski, D.; Phillips, P.; Schmidt, P.; & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
Laurente, L. & Poma, R. (2016). Introducción a la teoría de las probabilidades (Primera Ed). Puno, Perú.
Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tour-ism Management, 20(1), 89–97. https://doi.org/10.1016/S0261-5177(98)00094-6
Lee, C. K.; Song, H. J.; & Mjelde, J. W. (2008). The forecasting of International Expo tourism using quantitative and qualitative techniques. Tourism Management, 29(6), 1084–1098. https://doi.org/10.1016/j.tourman.2008.02.007
Lewis, C. D. (1982). Industrial and business forecasting methods. London: Butterworths. Retrieved from http://interstat.statjournals.net/YEAR/2008/articles/0810005.pdf
Lim, C., & Mcaleer, M. (1999). A seasonal analysis of Malaysian tourist arrivals to Australia. Mathematics and Computers in Simulation, 48(4), 573–583. https://doi.org/https://10.1016/S0378-4754(99)00038-5
Ljung, G., & Box, G. (1978). Biometrika Trust On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297–303. https://doi.org/https://doi.org/10.1093/biomet/65.2.297
Loganathan, N., & Ibrahim, Y. (2010). Forecasting International Tourism Demand in Malaysia Using Box Jen-kins Sarima Application. South Asian Journal of Tourism and Heritage, 3(2), 50–60.
Mackinnon, J. (1996). Numerical Distribution Functions for Unit Root and Cointegration Tests. Journal of Ap-plied Econometrics, 11(6), 601–618. https://doi.org/https://doi.org/10.1002/(SICI)1099-1255(199611)11:6<601::AID-JAE417>3.0.CO;2-T
Mamani, L. (2016). Impacto socioeconómico del turismo rural comunitario de Karina-Chucuito. Universidad Nacional del Altiplano. Retrieved from http://repositorio.unap.edu.pe/bitstream/handle/UNAP/1802/Articulo.pdf?sequence=1&isAllowed=y
MINCETUR. (2017a). Perú: Arribo de visitantes extranjeros a establecimientos de hospedaje, según región. Serie estadística 2003-2017. Retrieved January 17, 2018, from http://datosturismo.mincetur.gob.pe/appdatosTurismo/Content3.html
MINCETUR. (2017b). Perú: Llegada de turistas internacionales según país de residencia permanente. Re-trieved March 25, 2019, from http://datosturismo.mincetur.gob.pe/appdatosTurismo/Content1.html
MiViaje. (2018). Descubre las islas de los uros en el lago Titicacaca - Panel fotográfico. Retrieved March 25, 2019, from https://miviaje.com/las-islas-de-los-uros-lago-titicaca/
Nanthakumar, L., Subramaniam, T., & Kogid, M. (2012). Is “Malaysia Truly Asia”? Forecasting tourism demand from ASEAN using SARIMA approach. Tourismos, 7(1), 367–381. Retrieved from http://www.chios.aegean.gr/tourism/VOLUME_7_No1_art20.pdf
Organización Mundial del Turismo - OMT. (2017). Panorama OMT del turismo internacional. Retrieved from http://www.e-unwto.org/doi/book/10.18111/9789284419043
Peiris, H. (2016). A Seasonal ARIMA Model of Tourism Forecasting: The Case of Sri Lanka. Journal of Tourism, Hospitality and Sports, 22, 98–109. Retrieved from https://www.iiste.org/Journals/index.php/JTHS/article/view/33831
Peiris, M. S., & Perera, B. J. C. (1988). On Prediction with Fractionally Differenced Arima Models. Journal of Time Series Analysis, 9(3), 215–220. https://doi.org/10.1111/j.1467-9892.1988.tb00465.x
Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
Psillakis, Z., Alkiviadis, P., & Kanellopoulos, D. (2009). Low cost inferential forecasting and tourism demand in accommodation industry. Tourismos: An International Multidisciplinary Journal of Tourism, 4(2), 47–68.
PUNO. (2017). Principales recursos turísticos em Puno. Retrieved from http://www.bcrp.gob.pe/docs/Sucursales/Puno/Puno-Atractivos.pdf
Ray, B. K. (1993). Modeling Long Memory Processes for Optimal Long Range Prediction. Journal of Time Series Analysis, 14(5), 511–525. https://doi.org/10.1111/j.1467-9892.1993.tb00161.x
Reisen, V. (1994). Estimation of the fractional difference parameter in the ARIMA (p,d,q) model using the smoothed periodogram. Journal of Time Series Analysis, 15(3), 335–350. https://doi.org/https://doi.org/10.1111/j.1467-9892.1994.tb00198.x
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Shareef, R., & McAleer, M. (2005). Modelling International Tourism Demand and Volatility in Small Island Tour-ism Economies. International Journal of Tourism Research, 7(6), 313-333. https://doi.org/10.1002/jtr.538
Shitan, M. (2008). Time series modelling of tourist arrivals to Malaysia. Department of Mathemat-ics, Faculty of Science, and Applied & Computational Statistics Laboratory, Institute for Mathemati-cal Research, Universiti Putra Malaysia. Retrieved from http://interstat.statjournals.net/YEAR/2008/articles/0810005.pdf
Zhou, T., Bonham, C., & Gangnes, B. (2007). Modeling the supply and demand for tourism: a fully identified VECM approach. Department of Economics and University of Hawaii Economic Reserch Organization. Universi-ty of Hawaii at Manoa. Working Paper No. 07-17, July 20, 2007. https://doi.org/10.1001/archinte.165.8.854
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Pública Creative Commons Atribuição 4.0 Internacional (CC BY 4.0) que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).